The convergence problem in Mean Field Games

P. Cardaliaguet

(Paris-Dauphine)

Joint work with F. Delarue, J.-M. Lasry and P.-L. Lions

French Symposium on Games Paris, 26 - 30 May 2015 Université Paris Diderot

Mean Field Games (MFG) study

 nonatomic games = infinitely many agents having individually a negligible influence on the global system

(Ref: Aumann ('64), Schmeidler ('73), Hildenbrand ('74), Mas-Colell ('84), ...)

 in a dynamical framework = each agent acts on his state which evolves in continuous time and has a payoff depending on the other's position (related to optimal control)

Some references:

- Early work by Lasry-Lions (2006) and Huang-Caines-Malhamé (2006)
- Similar models in the economic literature: heterogeneous agent models (Aiyagari ('94), Bewley ('86), Krusell-Smith ('98),...)

Statement of the problem

Analyse the limit of the N-player differential game as $N \to +\infty$.

Motivation:

- derive collective behavior from individual ones
 More precisely, obtain heterogeneous agent models from Nash equilibria.
- Inspired by mean field models in mathematical physics.
- Continuous-time version of Hildebrand (1974) "Core and Equilibria of a Large Economy".

Main difficulty:

In the Nash system, players observe each other;
 in the limit game, players observe only the evolving density of the other agents.

Description of the N-player game

- N-players.
- Player i (for i = 1, ..., N) acts through his control ($\alpha_{i,t}$) on his state ($X_{i,t}$), which evolves according to the SDE

$$dX_{i,t} = \alpha_{i,t}dt + \sqrt{2}dB_t^i + \sqrt{2\beta}dW_t, \qquad X_{t_0} = x_{i,0},$$

where $(B_t^i)_{t\in[0,T]}$ and $(W_t)_{t\in[0,T]}$ are independent BM.

- The (B_t^i) correspond to the *individual noise* (specific to each player), (W_t) being the common noise, affecting all the players.
- Player aims at minimizing the cost function J_i^N , given, if the initial position of the system is $\mathbf{x}_0 = (x_{1,0}, \dots, x_{N,0})$ at time t_0 , by

$$J_i^N(t_0, \boldsymbol{x}_0, (\alpha_j)) = \mathbb{E}\left[\int_{t_0}^T \left(L(X_{i,s}, \alpha_{i,s}) + F^{N,i}(\boldsymbol{X}_s)\right) ds + G^{N,i}(\boldsymbol{X}_T)\right]$$

where $X_t = (X_{1,t}, \dots, X_{n,t})$ and where $L : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, $F^{N,i} : \mathbb{R}^{Nd} \to \mathbb{R}$ and $G^{N,i} : \mathbb{R}^{Nd} \to \mathbb{R}$ are are given maps.

The Hamiltonian of the problem is :

$$\forall (x,p) \in \mathbb{R}^d \times \mathbb{R}^d, \qquad H(x,p) = \sup_{\alpha \in \mathbb{R}^d} \left\{ -\alpha \cdot p - L(x,\alpha) \right\}.$$

Perfect Nash equilibria in Markov strategies are given by the system Nash system :

$$\begin{cases} -\partial_t v^{N,i}(t, \boldsymbol{x}) - \sum_{j=1}^N \Delta_{x_j} v^{N,i}(t, \boldsymbol{x}) - \beta \sum_{j,k=1}^N \operatorname{Tr} D_{x_j,x_k}^2 v^{N,i}(t, \boldsymbol{x}) + H(x_i, D_{x_i} v^{N,i}(t, \boldsymbol{x})) \\ + \sum_{j \neq i} D_p H(x_j, D_{x_j} v^{N,j}(t, \boldsymbol{x})) \cdot D_{x_j} v^{N,i}(t, \boldsymbol{x}) = F^{N,i}(\boldsymbol{x}) \\ & \text{in } [0, T] \times (\mathbb{R}^d)^N, \ i \in \{1, \dots, N\} \end{cases}$$

• If $(v^{N,i})_{i=1,...,N}$ is the solution of the Nash system, then the feedback strategies

$$\left(\alpha_i^*(t, \mathbf{x}) := -D_p H(x_i, D_{X_i} v^{N,i}(t, \mathbf{x}))\right)_{i=1,\dots,N}$$

provide a feedback Nash equilibrium for the game:

$$v^{N,i}(t_0, \mathbf{x}_0) = J_i^N(t_0, \mathbf{x}_0, (\alpha_i^*)_{j=1,...,N}) \le J_i^N(t_0, \mathbf{x}_0, \alpha_i, (\hat{\alpha}_i^*)_{j\neq i})$$

for any $i \in \{1, \dots, N\}$ and any control α_i adapted to the filtrations generated by $(B^j)_{i=1,\dots,N}$ and W.

The system of optimal trajectories.

We denote by $\boldsymbol{X}_t^N = (X_{1,t}^N, \dots, X_{N,t}^N)$ the "optimal trajectories" of the N-player game : they solve the system of N coupled stochastic differential equations (SDE) :

$$dX_{i,t}^{N} = -D_{\rho}H(X_{i,t},Dv^{N,i}(t,\boldsymbol{X}_{t}^{N}))dt + \sqrt{2}dB_{t}^{i} + \sqrt{2\beta}dW_{t}, \qquad t \in [0,T], \ i \in \{1,\dots,N\},$$

where

- \circ $v^{N,i}$ is the solution to the Nash system,
- the $(B_t^i)_{t \in [0,T]}$ and $(W_t)_{t \in [0,T]}$ are d-dimensional independent Brownian motions.

Problem : Analyse the limit of the $v^{N,i}$ and of the $(X_{i,t}^N)$ as $N \to +\infty$.

The symmetry assumption

To expect a limit, we suppose that, in the differential games, players are indistinguishable.

Namely, we assume that the $F^{N,i}$ and $G^{N,i}$ are of the form :

$$F^{N,i}(\mathbf{x}) = F(x_i, m_{\mathbf{x}}^{N,i})$$
 and $G^{N,i}(\mathbf{x}) = G(x_i, m_{\mathbf{x}}^{N,i}),$

where

- $m_{\mathbf{x}}^{N,i} = \frac{1}{N-1} \sum_{j \neq i} \delta_{x_j}$ is the empirical distribution of the $(x_j)_{j \neq i}$,
- $F, G: \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ are "smooth functions" $(\mathcal{P}(\mathbb{R}^d)$ being the set of Borel probability measures on \mathbb{R}^d .)

Under this assumption,

- the solution of the Nash system enjoy strong symmetry properties,
- the $(X_{i,\cdot}^N)$ are exchangeable (if this is the case for the $(X_{i,0}^N)$).

Summary of the problem

Describe the behavior, as N tends to infinity,

of the Nash system

$$\begin{cases} -\partial_t v^{N,i}(t, \boldsymbol{x}) - \sum_{j=1}^N \Delta_{x_j} v^{N,i}(t, \boldsymbol{x}) - \beta \sum_{j,k=1}^N \operatorname{Tr} D_{x_j,x_k}^2 v^{N,i}(t, \boldsymbol{x}) + H(x_i, D_{x_i} v^{N,i}(t, \boldsymbol{x})) \\ + \sum_{j \neq i} D_p H(x_j, D_{x_j} v^{N,j}(t, \boldsymbol{x})) \cdot D_{x_j} v^{N,i}(t, \boldsymbol{x}) = F(x_i, m_{\boldsymbol{x}}^{N,i}) \\ & \qquad \qquad \text{in } [0, T] \times (\mathbb{R}^d)^N \\ v^{N,i}(T, \boldsymbol{x}) = G(x_i, m_{\boldsymbol{x}}^{N,i}) & \text{in } (\mathbb{R}^d)^N \end{cases}$$

and of the associated optimal trajectories

$$dX_{i,t}^{N} = -D_{p}H(X_{i,t},Dv^{N,i}(t,\boldsymbol{X}_{t}^{N}))dt + \sqrt{2}dB_{t}^{i} + \sqrt{2\beta}dW_{t}, \qquad t \in [0,T], \ i \in \{1,\ldots,N\},$$

Previous results

The MFG system.

• In the limit as $N \to +\infty$ and for $\beta = 0$, the players should take into account only the evolving density of the other players. This formally yields to the MFG system :

$$(MFG) \qquad \left\{ \begin{array}{ll} -\partial_t u - \Delta u + H(x,Du) = F(x,m(t)) & \text{ in } [0,T] \times \mathbb{R}^d \\ \partial_t m - \Delta m - \operatorname{div}(mD_pH(x,Du)) = 0 & \text{ in } [0,T] \times \mathbb{R}^d \\ u(T,x) = G(x,m(T)), \ m(t_0,\cdot) = m_0 & \text{ in } \mathbb{R}^d \end{array} \right.$$

- Introduced by Lasry-Lions and by Huang-Caines-Malhamé and studied intensively since then.
- Existence and uniqueness of solution under a monotonicity assumptions for F and G (here for F):

$$\int_{\mathbb{T}^d} (F(x,m) - F(x,m')) d(m-m')(x) \geq 0.$$

This assumption "means" that the players dislike congested areas. (Lasry-Lions, 2006)

 Optimal strategies associated with the MFG system yield to ε-optimal open-loop strategies in the N-player game.
 (Huang-Caines-Malhamé 2006, Carmona-Delarue 2012, Kolokoltsov 2014).

The master equation.

• Because of the symmetry, the $v^{N,i}$ can be written as

$$v^{N,i}(t,\boldsymbol{x}) = U^N(t,x_i,m_{\boldsymbol{x}}^{N,i}).$$

 Following Lasry-Lions, the expected limit U of the (U^N) should formally satisfy the master equation.

$$\begin{cases} -\partial_t U - (1+\beta)\Delta_x U + H(x, D_x U) \\ -(1+\beta) \int_{\mathbb{R}^d} \operatorname{div}_y \left[D_m U \right] \ dm(y) + \int_{\mathbb{R}^d} D_m U \cdot D_p H(y, D_x U) \ dm(y) \\ -2\beta \int_{\mathbb{R}^d} \operatorname{div}_x \left[D_m U \right] dm(y) - \beta \int_{\mathbb{R}^{2d}} \operatorname{Tr} \left[D_{mm}^2 U \right] \ dm \otimes dm = F(x, m) \\ \operatorname{in} \left[0, T \right] \times \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \\ U(T, x, m) = G(x, m) \qquad \operatorname{in} \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \end{cases}$$

where

- the unknown is $U: [0, T] \times \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$,
- $\partial_t U$, $D_x U$ and $\Delta_x U$ stand for the usual derivatives with respect to the local variables (t,x) of U,
- $D_m U$ and $D_{mm}^2 U$ are the first and second order derivatives with respect to the measure m.

But so far:

- No link between the solutions (v^{N,i}) of the Nash system (open-loop regime studied by Fischer ('14) and by Lacker ('14)).
- Little rigorous results on the master equations (Lions ('13), Buckdahn-Li-Peng-Rainer ('14), Gangbo-Swiech ('14), Chassagneux-Crisan-Delarue ('15), Bessi ('15))

Our contribution:

- Well-posedness of the master equation, (when the ambiant space is the torus $\mathbb{T}^d:=\mathbb{R}^d/\mathbb{Z}^d$)
- Limit results for the Nash system and the associated optimal trajectories, (using the well-posedness of the master equation in a key way)

Statement of the results

Standing assumptions:

- Ambient space \mathbb{T}^d ,
- H smooth and $D_{pp}^2 H > 0$,
- F and G smooth and monotone.

Theorem 1

Under our standing assumptions, the master equation has a unique classical solution.

Theorem 2

Let $(v^{N,i})$ be the solution to the Nash system and U be the classical solution to the **master** equation. For any $N \ge 1$, $\mathbf{x} \in (\mathbb{T}^d)^N$, let $m_{\mathbf{x}}^N := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$. Then

$$\frac{1}{N}\sum_{i=1}^{N}\left|v^{N,i}(t_0,\boldsymbol{x})-U(t_0,x_i,m_{\boldsymbol{x}}^N)\right|\leq CN^{-1/2}.$$

Let $t_0 \in [0, T)$, $m_0 \in \mathcal{P}(\mathbb{T}^d)$ and let (Z_i) be an i.i.d family of random variables of law m_0 . Let also (B^i) and W be independent B.M. and independent of the (Z_i) .

We consider

• the optimal trajectories $(\boldsymbol{X}_t^N = (X_{1,t}^N, \dots, X_{N,t}^N))_{t \in [t_0, T]}$ of the Nash system :

$$\left\{ \begin{array}{l} dX_{i,t}^N = -D_p H(X_{i,t}^N, D_{x_i} v^{N,i}(t, \boldsymbol{X}_t^N)) dt + \sqrt{2} dB_t^i + \sqrt{2\beta} dW_t, \qquad t \in [t_0, T] \\ X_{i,t_0}^N = Z_i \end{array} \right.$$

• and the solution $(Y_t^N = (Y_{1,t}^N, \dots, Y_{N,t}^N))_{t \in [t_0, T]}$ of stochastic differential equation of McKean-Vlasov type :

$$\begin{cases} dY_{i,t}^N = -D_p H\left(Y_{i,t}^N, D_X U(t, Y_{i,t}^N, \mathcal{L}(Y_{i,t}^N|W)\right) dt + \sqrt{2} dB_t^i + \sqrt{2\beta} dW_t, \\ Y_{i,t_0}^N = Z_i. \end{cases}$$

Theorem 3

For any $N \ge 1$ and any $i \in \{1, ..., N\}$, we have

$$\mathbb{E}\left[\sup_{t\in[t_0,T]}\left|X_{i,t}^N-Y_{i,t}^N\right|\right]\leq CN^{-\frac{1}{d+8}}$$

for some constant C > 0 independent of t_0 , m_0 and N.

Conclusion

We have established

- the well-posedness of the master equation,
- limit results for the Nash system and the associated optimal trajectories.

Open problems:

- Analysis in more realistic setting (with boundary conditions, non constant diffusion matrices,...)
- Stronger convergence for the solutions (v^{N,i}) of the Nash system.
- Strongly interacting systems (when F and G are local couplings).

