Ranking players in an ordinal coalitional framework

S. Moretti

stefano.moretti@dauphine.fr

CNRS UMR7243 - LAMSADE, Université Paris-Dauphine

French Symposium on Games 2015 Paris, 26 - 30 May 2015

- A company should rank some employees based on their job performance
- taking into account the ability of each employee to work alone on its own initiative and with others as a team
- Any attempt to evaluate all teams and single employees on a common quantitative scale turns out to be impossible

EXAMPLE (three employees 1, 2 and 3)

- The job performance of {1} as a singleton coalition is significantly lower than the job performance of {3}
- the performance of the team {2,3} is strictly lower than the performance of any other team (strong incompatibility between 2 and 3);
- $\{1,2\}$ is the most successful team. So:

$$\{1,2\}\succ\{3\}\succ\{1\}\succ\{2,3\}$$

Q: who is better between 1 and 3 (and should be promoted)?

2 An approach using the Banzhaf value (M. (2015) HOM OEC)

Power relations and social rankings

- a total preorder ≽ on 2^N as a coalitional power relation: for each S, T ∈ 2^N, S ≽ T stands for 'S is considered at least as strong as T according to ≽'.
- We call the map ρ: P^{2N} → T^N, assigning to each power relation on 2^N a total binary relation on N, a social ranking solution. [Here P^{2^N} is the set of all power relations on 2^N, and T^N is the set of all total relations on N]
- Interpretation: for each i, j ∈ N, iρ(≽)j stands for 'i is considered at least as influential as j according to the social ranking ρ on ≽'.

Is player *i* more influential than *j*?

We will say that *i* dominates *j* if for every possible coalition $S \subseteq N$ the number of coalitions at least as strong as *S* that contain *i* is larger than the number of those that contain j.

Axiom [DOM]

- We say that a social ranking satisfies DOM iff

i dominates $j \Rightarrow i\rho(\succcurlyeq)j$

[and in addition $\neg(j\rho(\succcurlyeq)i)$ if the dominance holds strict for some coalition S]

Consider the coalitional power relation

$$\{1,2,3\} \succ \{2\} \succ \{1,3\} \succ \{1,2\} \succ \{3\} \succ \{1\} \succ \emptyset \succ \{2,3\}$$

	$\{1, 2, 3\}$	{2}	$\{1, 3\}$	$\{1, 2\}$	{3}	{1}	Ø	{2,3}
player 1	1	1	2	3	3	4	4	4
player 2	1	2	2	3	3	3	3	4
player 3	1	1	2	2	3	3	3	4

Note that both 1 and 2 dominate 3, whereas neither 1 dominates 2 nor 2 dominates 1.

Some notations on coalitional games

- A coalitional game (N, v): a finite player set N = {1,...,n} and a characteristic function v : 2^N → ℝ such that v(Ø) = 0.
- the *Banzhaf value* (Banzhaf (1964)) of a coalitional game *v* on *N*:

$$\beta_i(v) = \frac{1}{2^{n-1}} \sum_{S \in 2^{N \setminus \{i\}}} (v(S \cup \{i\}) - v(S))$$
(1)

for each $i \in N$

Given a total preorder >> on 2^N, we denote by V(>>) the class of coalitional games that numerically represent >> (i.e., S >> T ⇔ v(S) ≥ v(T) for each S, T ∈ 2^N and each v ∈ V(>>) and such that v(∅) = 0.

Connection with the Banzhaf power index (1)

Theorem

Let $\geq \in \mathcal{P}^{2^N}$. For each $i, j \in N$

i dominates $j \Leftrightarrow [\beta_i(v) \ge \beta_j(v)$ for every $v \in V(\succcurlyeq)]$.

 \implies A social ranking that satisfies the DOM property is such that if *i* has more power than *j* according to the Banzhaf power index of every game representing \succeq , then *i* is ranked stronger than *j*.

Dichotomous total preorder

Consider the coalitional power relation

$$\{1,2,3\} \sim \{2\} \succ \{1,3\} \sim \{1,2\} \sim \{3\} \sim \{1\} \sim \emptyset \sim \{2,3\}$$

	$\{1, 2, 3\}$	{2}	$\{1, 3\}$	$\{1, 2\}$	{3}	{1}	Ø	{2,3}
player 1	1	1	4	4	4	4	4	4
player 2	2	2	4	4	4	4	4	4
player 3	1	1	4	4	4	4	4	4

 \Longrightarrow In dichotomous power relations the dominance relation is total.

How to "decompose" a power relation

$$\{1,2,3\}\succ\{2\}\succ\{1,3\}\succ\{1,2\}\succ\{3\}\succ\{1\}\succ\emptyset\succ\{2,3\}$$

is the intersection of 7 dichotomous total preorders:

$$\{1,2,3\} \succ \{2\} \sim \{1,3\} \sim \{1,2\} \sim \{3\} \sim \{1\} \sim \emptyset \sim \{2,3\}$$

[here 1 dominates 2 and 2 dominates 1]

 $\{1,2,3\} \sim \{2\} \succ \{1,3\} \sim \{1,2\} \sim \{3\} \sim \{1\} \sim \emptyset \sim \{2,3\}$ [here 2 dominates 1]

 $\{1,2,3\} \sim \{2\} \sim \{1,3\} \succ \{1,2\} \sim \{3\} \sim \{1\} \sim \emptyset \sim \{2,3\}$ [here 1 dominates 2 and 2 dominates 1]

$$\{1,2,3\} \rhd \{2\} \sim \{1,3\} \rhd \{1,2\} \rhd \{3\} \rhd \{1\} \rhd \emptyset \rhd \{2,3\}$$

	$\{1, 2, 3\}$	{2}	{1,3}	{1,2}	{3}	{1}	Ø	{2,3}	Sum
p. 1	1	2	2	3	3	4	4	4	23
p. 2	1	2	2	3	3	3	3	4	21

$$\{1,2,3\} \sqsupset \{2\} \sqsupset \{1,3\} \sqsupset \{1,2\} \sqsupset \{3\} \sqsupset \{1\} \sim \emptyset \sim \{2,3\}$$

	$\{1, 2, 3\}$	{2}	{1,3}	{1,2}	{3}	{1}	Ø	{2,3}	Sum
p. 1	1	1	2	3	3	4	4	4	22
p. 2	1	2	2	3	3	4	4	4	23

The "relative scores" are $s_{12}(\supseteq) = 23 - 21 = 2$ and $s_{21}(\supseteq) = 23 - 22 = 1$.

"Additive" social ranking

- if a power relation ≽ can be obtained as the intersection of two power relations ≥ and ⊒, such that
- *i* is ranked better than *j* in the social ranking on \geq
- and j is ranked better than i in the social ranking on \square ,

"Additive" social ranking

- if a power relation ≽ can be obtained as the intersection of two power relations ≥ and ⊒, such that
- *i* is ranked better than *j* in the social ranking on \geq
- and j is ranked better than i in the social ranking on \square ,
- then the relative social ranking of *i* and *j* in ≽ is determined by the comparison of the "relative scores" between *i* and *j* on ≥ and on ⊒, respectively.

Axiom [ADD] Let $\geq \in \mathcal{P}^{2^N}$ and let $\geq, \supseteq \in K^{\geq}$ be two power relations such that $i\rho(\supseteq)j$ and $j\rho(\supseteq)i$, for some $i, j \in N$. A social ranking ρ satisfies the additivity property w.r.t. \geq and \supseteq if and only if the following relation holds:

$$s_{ij}(\supseteq) \geq s_{ji}(\beth) \Leftrightarrow i\rho(\supseteq \cap \sqsupseteq)j.$$

$$\{1,2,3\} \vartriangleright \{2\} \sim \{1,3\} \vartriangleright \{1,2\} \vartriangleright \{3\} \vartriangleright \{1\} \vartriangleright \emptyset \rhd \{2,3\}$$

	$\{1, 2, 3\}$	{2}	{1,3}	{1,2}	{3}	{1}	Ø	{2,3}	Sum
p. 1	1	2	2	3	3	4	4	4	23
p. 2	1	2	2	3	3	3	3	4	21

$$\{1,2,3\} \sqsupset \{2\} \sqsupset \{1,3\} \sqsupset \{1,2\} \sqsupset \{3\} \sqsupset \{1\} \sim \emptyset \sim \{2,3\}$$

	$\{1, 2, 3\}$	{2}	$\{1, 3\}$	$\{1, 2\}$	{3}	{1}	Ø	{2,3}	Sum
p. 1	1	1	2	3	3	4	4	4	22
p. 2	1	2	2	3	3	4	4	4	23

 $s_{12}(\succeq) = 23 - 21 = 2$ and $s_{21}(\sqsupset) = 23 - 22 = 1 \implies$ if a social ranking satisfies the DOM and the ADD (w.r.t. \trianglerighteq and \sqsupset), then $1\rho(\succ)2$.

Connection with the Banzhaf power index (2)

Theorem

Let ρ be a social ranking which satisfies DOM and ADD w.r.t. \supseteq and \supseteq . Then,

$$i
ho(\succcurlyeq)j \Leftrightarrow \beta_i(\hat{\mathbf{v}}_{\succeq}) - \beta_j(\hat{\mathbf{v}}_{\succeq}) \geq \beta_j(\hat{\mathbf{v}}_{\sqsupset}) - \beta_i(\hat{\mathbf{v}}_{\sqsupset}),$$

where $\hat{v}_{\geq} \in V(\geq)$ and $\hat{v}_{\exists} \in V(\exists)$ are the canonical games representing \geq and \exists , respectively.

Here \supseteq and \supseteq are such that

$$\label{eq:constraint} \unrhd \equiv \bigcap_{\mathcal{T} \in \Theta^{jj}} \succcurlyeq_{\mathcal{T}} \quad \text{and} \quad \sqsupseteq \equiv \bigcap_{\mathcal{T} \in \Theta^{jj}} \succcurlyeq_{\mathcal{T}},$$

for some $i, j \in N$.

We call *canonical* game the coalitional game $\hat{v} \in V(\succcurlyeq)$ such that $\hat{v}(T) - \hat{v}(T^{\sigma}) = |[T]|$ (with $\hat{v}(\emptyset) = 0$), where [T] is the indifference set of T wrt \succcurlyeq .

$$\{1,2,3\} \vartriangleright \{2\} \sim \{1,3\} \vartriangleright \{1,2\} \vartriangleright \{3\} \vartriangleright \{1\} \vartriangleright \emptyset \rhd \{2,3\}$$

	$\{1, 2, 3\}$	{2}	$\{1, 3\}$	{1,2}	{3}	{1}	Ø	{2,3}
Ŷ⊵	6	5	5	3	2	1	0	-1

$$\beta_1(\hat{\mathbf{v}}_{\succeq}) - \beta_2(\hat{\mathbf{v}}_{\succeq}) = \frac{1}{2}(\hat{\mathbf{v}}_{\succeq}(\{1\}) - \hat{\mathbf{v}}_{\succeq}(\{2\}) + \hat{\mathbf{v}}_{\succeq}(\{1,3\}) - \hat{\mathbf{v}}_{\succeq}(\{2,3\})) = 1$$

$$\{1,2,3\} \sqsupset \{2\} \sqsupset \{1,3\} \sqsupset \{1,2\} \sqsupset \{3\} \sqsupset \{1\} \sim \emptyset \sim \{2,3\}$$

	$\{1, 2, 3\}$	{2}	$\{1, 3\}$	$\{1,2\}$	{3}	{1}	Ø	$\{2,3\}$
Ŷ⊒	5	4	3	2	1	0	0	0

 $\beta_{2}(\hat{v}_{\Box}) - \beta_{1}(\hat{v}_{\Box}) = \frac{1}{2}(\hat{v}_{\Box}(\{2\}) - \hat{v}_{\Box}(\{1\}) + \hat{v}_{\Box}(\{2,3\}) - \hat{v}_{\Box}(\{1,3\})) = \frac{1}{2},$

Future directions (WP with M. Öztürk)

Given a power relation \succ on 2^N , maybe not all the comparisons are relevant.

1 <i>vs</i> 2
$\{1\}$ vs $\{2\}$
$\{1,3\}$ vs $\{2,3\}$
$\{1,4\}$ vs $\{2,4\}$
÷
$\{1,3,4\}$ vs $\{2,3,4\}$
÷
$S \cup \{1\}$ vs $S \cup \{2\}$
:

for each $S \in 2^{N \setminus \{1,2\}}$.

Example

$$N = \{1, 2, 3, 4\}$$

$$\begin{array}{l} 1 \succ 2 \succ 3 \\ 13 \succ 23 \succ 12 \\ 24 \succ 14 \succ 34 \\ 1234 \sim 123 \sim 124 \sim 134 \sim 234 \end{array}$$

Relevant information:

1 vs. 2	2 vs. 3	1 vs. 3
$1 \succ 2$	2 ≻ 3	$1 \succ 3$
$13 \succ 23$	$12 \prec 13$	$12 \prec 23$
$14 \prec 24$	24 ≻ 34	$14 \succ 34$
$134\sim234$	$124 \sim 134$	$124\sim234$

Example

$$N = \{1, 2, 3, 4\}$$

$$\begin{array}{l} 1 \succ 2 \succ 3 \\ 13 \succ 12 \succ 23 \\ 24 \succ 14 \succ 34 \\ 1234 \sim 123 \sim 124 \sim 134 \sim 234 \end{array}$$

Relevant information:

1 vs. 2	2 vs. 3	1 vs. 3
$1 \succ 2$	2 ≻ 3	$1 \succ 3$
$13 \succ 23$	$12 \prec 13$	12 ≻ 23
$14 \prec 24$	24 ≻ 34	$14 \succ 34$
$134\sim234$	$124 \sim 134$	$124\sim234$