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Motivation

� Study cooperation in noncooperative games with asymmetric information:
the noncooperative game describes the basic interactive decision problem,
the �default game.�

� Account for the following scenario: players exchange information by just
talking together and then agree on a binding agreement.

� Make (a reverse) use of the �Folk theorem�: from noncooperative solutions
of the in�nitely repeated game to cooperative solutions of the one-shot
game.



Related literature

� Cooperation/binding agreements in noncooperative games: Nash (1953),
Myerson (1984, 1991, ....), Peters and Szentes (2012), Celik and Peters
(2011, 2015), A. Kalai and E. Kalai (2013), etc.

� �Folk theorem� in one-shot games: A. Kalai, E. Kalai, Lehrer and Samet
(2010), Myerson (1991), Tennenholtz (2004), Forges (2013), etc.

� Insights from in�nitely repeated games to study communication and/or
cooperation in one-shot games: Aumann, Maschler and Stearns (1968),
Forges (1990), Aumann and Hart (2003), Simon, Spie·z and Toruńczyk
(2008), etc.



MODEL: Two-person one-shot Bayesian game B(p)

K: �nite set of types of player 1 (the only informed player)

p 2 �(K): probability distribution over K, pk > 0 for every k 2 K.

Player 1�s type k is chosen in K according to p at a virtual initial stage of the
game; only player 1 is informed of k.

Ai: �nite set of actions of player i, i = 1; 2.

Player 1 and player 2 simultaneously choose an action inA1 andA2 respectively.

Their respective payo¤s are Uk(a1; a2) and V k(a2) when player 1�s type is k
and a 2 A = A1 �A2 is chosen.

Player 2�s payo¤ does not depend on player 1�s action (as in Sender-Receiver
games).



DEFINITION of a COOPERATIVE SOLUTION

� as a Nash equilibrium of a noncooperative game (implementation)

� by a list of desirable properties (characterization)

then su¢ cient conditions for EXISTENCE



Given p 2 �(K), a set of signals S and a decision mapping � : S ! �(A),
let G(p; S; �) be the following game:

� Player 1�s type k is chosen in K according to p, player 1 is informed of k.

� Player 1 sends a signal s 2 S to player 2.

� The joint decision �(s) 2 �(A) is proposed to both players.

� The players simultaneously accept or reject �(s).

� If they both accept �(s), player 1 gets Uk(�(s)) and player 2 gets V k(�(s)).
If at least one of them rejects �(s), player 1 chooses a1, player 2 chooses
a2, player 1 gets Uk(a1; a2) and player 2 gets V k(a2).



A solution of B(p) by �cheap talk and commitment submitted to unanimous
approval� consists of (S; �; �) :

� S: �nite set of signals

� � : K ! �(S) : signalling strategy for player 1; �(s j k) := probability
of sending s given type k.

� � : S ! �(A) : joint decision mapping; �(s) := lottery over A that is
performed on behalf of the players.

such that � and unanimous approval of �(s) for every s 2 S is part of a perfect
Bayesian equilibrium (PBE) of the game G(p; S; �).



Characterization of solutions

(S; �; �) is a solution of B(p) by �cheap talk and commitment submitted to
unanimous approval�,

(i) � is incentive compatible given �.

(ii) � is optimal for player 2 given �.

(iii) Player 1�s interim expected payo¤ from (S; �; �) is individually rational.

These conditions look familiar, but their meaning here is not the same as in
other frameworks. In particular, player 2�s commitment is limited so that no
revelation principle holds; incentive compatibility is thus very demanding.



(i) Incentive compatibility (I.C.)

Player 1 sends his signal by himself, without the help of a mediator; hence he
randomizes over signals s; s0 2 S if and only he is indi¤erent between s and s0.

� is incentive compatible (given �) i¤

8k 2 K, 8s; s0 2 S : �(s j k) > 0 and �(s0 j k) > 0

) Uk(�(s)) = Uk(�(s0))

8k 2 K, 8s; s0 2 S : �(s j k) > 0 and �(s0 j k) = 0

) Uk(�(s)) � Uk(�(s0))

Similar conditions appear in Aumann, Maschler and Stearns (1968), Sorin
(1983), Hart (1985), Aumann and Hart (2003).



(ii) Optimality for player 2

A mixed decision � 2 �(A2) is optimal for player 2 given his belief q 2 �(K)
if
P
k2K q

kV k(�) = maxa22A2
P
k2K q

kV k(a2).

Let R(q) = f� 2 �(A2) : � is optimal given qg and let R = [q2�(K)R(q).

R is the set of player 2�s strategies that can be rationalized, in the sense that
they are optimal for some belief.

The prior probability p over K and a signalling strategy � : K ! �(S)
induce posterior probability distributions ps(�) over K for every signal s 2 S
(assuming wlog that 8s 2 S, 9k : �(s j k) > 0).

� is optimal for player 2 given � i¤

for every s 2 S, �(s) is optimal given ps(�) , margA2(�(s)) 2 R(ps(�))



(iii) Individual rationality (I.R.) for player 1

Player 1�s interim expected payo¤ (uk)k2K is individually rational i¤ player 2
has a rationalizable strategy that prevents every type k of player 1 from getting
more than uk, namely

9� 2 R 8k 2 K 8a1 2 A1 : Uk(a1; �) � uk.

If � is I:C: given �, then, for every type k, all signals s such that �(s j k) > 0
lead to the same payo¤ Uk(�(s)) � uk.

In a solution (S; �; �), I.R. for player 1 can thus be interpreted as a posterior
I.R. condition.



Does every Bayesian game B(p) have a solution?

Example:

(U1; V 1) =
` r

t 1; 1 2; 0
b 0; 1 0; 0

(U2; V 2) =
` r

t 0; 0 0; 1
b 2; 0 1; 1

R = �(f`; rg)

(u1; u2) is I.R. for player 1 , u1 + u2 � 3.

For every x 2 �(A), U1(x)+ U2(x) � 2:

Let s such that �(s j 1) > 0 and �(s j 2) > 0; I.C. ) uk = Uk(�(s)),
k = 1; 2, with �(s) 2 �(A) ) u cannot be I.R. for player 1.



(U1; V 1) =
` r

t 1; 1 2; 0
b 0; 1 0; 0

(U2; V 2) =
` r

t 0; 0 0; 1
b 2; 0 1; 1

Only way to possibly get I.R. for player 1: completely revealing solution. Then
optimality for player 2 ) �(` j 1) = 1, �(r j 2) = 1 ) player 1 has at best
(1; 1), which is not I.R.

) no solution, even if PBE of G(p; S; �) is weakened to NE.

I.R. for player 1 (u1 + u2 � 3) is much more demanding than �I.R. for every
type� (u1 � 1 and u2 � 1).

The allocation �(1) = (t; `), �(2) = (b; r) is I.C., optimal for player 2 and
I.R. for every type of player 1, but cannot be implemented by cheap talk and
commitment submitted to unanimous approval.



Assumptions guaranteeing the existence of a cooperative solution

I. No decision for the informed player, Sender-Receiver game:

Nonrevealing solution.

II. Rationalizable uniform punishment strategy (RUPS):

Let for every k 2 K, mk = min�2Rmaxa12A1 U
k(a1; �).

�� 2 R is a rationalizable uniform punishment strategy (RUPS) of player 2 i¤
8k 2 K 8a1 2 A1 : Uk(a1; ��) � mk.

Under RUPS, u = (uk)k2K is I.R. for player 1 i¤ uk � mk 8k 2 K.

The example shows that RUPS is crucial for the �if�part.



Possible proof of existence of a solution under RUPS

Apply results that were initially conceived to establish the existence of Nash
equilibria in undiscounted two-person in�nitely repeated games with a single
informed player:

Sorin (1983) in the case of two types (proof using elementary mathematical
tools), Simon, Spie·z and Toruńczyk (1995), Renault (2000), Simon (2002).

Simon, Spie·z and Toruńczyk (2008) explicitly proposes an application to one-
shot decision problems.



Theorem (Renault (2000), Simon (2002), Simon et al. (2008))

Fix a �nite set K, a compact, convex set X, linear functions Uk : X ! R,
k 2 K, a lower-semi-continuous function f : �(K) ! R and a non-empty
convex valued, upper-hemi-continuous correspondence F : �(K)! X s.t.

Assumption: 8q; � 2 �(K) 9 x such that x 2 F (q) and Pk �kUk(x) � f(�)
Then there exist S and for every p, � : K ! �(S) and � : S ! X s.t.

(i) � is incentive compatible given �; so, uk = Uk(�(s)) if �(s j k) > 0.

(ii) 8s 2 S : �(s) 2 F (ps).

(iii) 8q 2 �(K) : q � u � f(q).



(ii): Let F (q) =
n
x 2 �(A) : x is optimal given q, i.e., margA2(x) 2 R(q)

o
.

Then �(s) 2 F (ps) for every s 2 S , � is optimal for player 2 given �.

(iii): Let for every q 2 �(K), f(q) = min�2Rmaxa12A1
P
k
qkUk(a1; �).

Under RUPS, u = (uk)k2K is I.R. for player 1, 8q 2 �(K) : q � u � f(q).

Assumption: Let q; � 2 �(K).

Let �(q) 2 R(q) and ba1 � ba1(�; q) 2 argmax Pk �kUk(�; �(q)).
Take bx � bx(�; q) = ba1(�; q)
 �(q); bx 2 F (q);
P
k �
kUk(bx) = P

k �
kUk(ba1; �(q)) � f(�).



Is there a simpler proof? There may be no �simple� solution...

Example: U1(�) =
` c r

t 1 1 1
b 0 0 3

U2(�) =
` c r

t 3 0 0
b 2 2 2

m1 = 1, m2 = 2, c is a RUPS of player 2.

Let q 2 [0; 1] be the probability that k = 1. Choose player 2�s payo¤s so that

r if 0 � q � 1
4

R(q) = c if 1
4 � q �

3
4

` if 3
4 � q � 1



At p = 1
2: there is NO nonrevealing solution, NO completely revealing solution

but there is a partially revealing solution.

Player 1 sends signals y and g so as to reach the posteriors py = 1
4 and pg =

3
4.

Let then xy = b
 (23c+
1
3r) and xg = t
 (

2
3`+

1
3c).

For player 1, U1(xy) = U1(xg), U2(xg) = U2(xy).

For player 2, any mixture of c and r (resp., of ` and c) is optimal at py = 1
4

(resp., pg = 3
4).

Here, the payo¤s at the partially revealing solution are exactly individually
rational. There are more interesting examples, in which payo¤s at the solution
improve upon Bayesian Nash equilibrium payo¤s.



Conclusion and extensions

� Under strong conditions (single informed player, uninformed player�s payo¤
independent of informed player�s action, RUPS), there exists a solution by
�cheap talk and commitment submitted to unanimous approval�; existence
may fail if RUPS does not hold.

� Extension to the case of general payo¤s ??? Yes, if the de�nition of a
solution is weakened by requiring implementation in NE instead of PBE;
then RUPS can be weakened to UPS.

� Even with implementation in NE, the result does not extend to the case
of lack of information on both sides, with private values and UPS.


